Velocity statistics distinguish quantum turbulence from classical turbulence.

نویسندگان

  • M S Paoletti
  • Michael E Fisher
  • K R Sreenivasan
  • D P Lathrop
چکیده

By analyzing trajectories of solid hydrogen tracers, we find that the distributions of velocity in decaying quantum turbulence in superfluid 4He are strongly non-Gaussian with 1/v(3) power-law tails. These features differ from the near-Gaussian statistics of homogenous and isotropic turbulence of classical fluids. We examine the dynamics of many events of reconnection between quantized vortices and show by simple scaling arguments that they produce the observed power-law tails.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turbulence in a Bose-Einstein condensate

We numerically model turbulence in a trapped atomic Bose–Einstein condensate by solving the Gross–Pitaevskii nonlinear Schroedinger equation. We find that, after an initial growth, the vortex length decays approximately as t−1 where t is time, consistent with experiments in turbulent superfluid helium, and that the velocity components obey power-law statistics, again in agreement with observati...

متن کامل

Acceleration statistics in thermally driven superfluid turbulence.

New methods of flow visualization near absolute zero have opened the way to directly compare quantum turbulence (in superfluid helium) to classical turbulence (in ordinary fluids such as air or water) and explore analogies and differences. We present results of numerical simulations in which we examine the statistics of the superfluid acceleration in thermal counterflow. We find that, unlike th...

متن کامل

Nonclassical velocity statistics in a turbulent atomic Bose-Einstein condensate.

In a recent experiment Paoletti [Phys. Rev. Lett. 101, 154501 (2008)]10.1103/PhysRevLett.101.154501 monitored the motion of tracer particles in turbulent superfluid helium and inferred that the velocity components do not obey the Gaussian statistics observed in ordinary turbulence. Motivated by their experiment, we create a small 3D turbulent state in an atomic Bose-Einstein condensate, compute...

متن کامل

Numerical study of collisional particle dynamics in cluster-induced turbulence

We present a computational study of cluster-induced turbulence (CIT), where the production of fluid-phase kinetic energy results entirely from momentum coupling with finite-size inertial particles. A separation of length scales must be established when evaluating the particle dynamics in order to distinguish between the continuous mesoscopic velocity field and the uncorrelated particle motion. ...

متن کامل

Spectrally condensed turbulence in thin layers

We present experimental results on the properties of bounded turbulence in thin fluid layers. In contrast with the theory of two-dimensional 2D turbulence, the effects of the bottom friction and of the spectral condensation of the turbulence energy are important in our experiment. Here we investigate how these two factors affect statistical moments of turbulent fluctuations. The inverse energy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 101 15  شماره 

صفحات  -

تاریخ انتشار 2008